Glycosylation Substrate Specificity of Pseudomonas aeruginosa 1244 Pilin*
نویسندگان
چکیده
منابع مشابه
Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificity.
The structural similarity between the pilin glycan and the O-antigen of Pseudomonas aeruginosa 1244 suggested that they have a common metabolic origin. Mutants of this organism lacking functional wbpM or wbpL genes synthesized no O-antigen and produced only non-glycosylated pilin. Complementation with plasmids containing functional wbpM or wbpL genes fully restored the ability to produce both O...
متن کاملGlycosylation substrate specificity of Pseudomonas aeruginosa 1244 pilin.
The beta-carbon of the Pseudomonas aeruginosa 1244 pilin C-terminal Ser is a site of glycosylation. The present study was conducted to determine the pilin structures necessary for glycosylation. It was found that although Thr could be tolerated at the pilin C terminus, the blocking of the Ser carboxyl group with the addition of an Ala prevented glycosylation. Pilin from strain PA103 was not gly...
متن کاملPseudomonas aeruginosa 1244 pilin glycosylation: glycan substrate recognition.
The pilin of Pseudomonas aeruginosa 1244 is glycosylated with an oligosaccharide that is structurally identical to the O-antigen repeating unit of this organism. Concordantly, the metabolic source of the pilin glycan is the O-antigen biosynthetic pathway. The present study was conducted to investigate glycan substrate recognition in the 1244 pilin glycosylation reaction. Comparative structural ...
متن کاملInfluence of pilin glycosylation on Pseudomonas aeruginosa 1244 pilus function.
The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of nosocomial pneumonia. Among its virulence factors, the type IV pili of P. aeruginosa strain 1244 contain a covalently linked, three-sugar glycan of previously unknown significance. The work described in this paper was carried out to determine the influence of the P. aeruginosa 1244 pilin glycan on pilus function, as well as...
متن کاملIdentification of the Pseudomonas aeruginosa 1244 pilin glycosylation site.
Previous work (P. Castric, F. J. Cassels, and R. W. Carlson, J. Biol. Chem. 276:26479-26485, 2001) has shown the Pseudomonas aeruginosa 1244 pilin glycan to be covalently bound to a serine residue. N-terminal sequencing of pilin fragments produced from endopeptidase treatment and identified by reaction with a glycan-specific monoclonal antibody indicated that the glycan was present between resi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2006
ISSN: 0021-9258
DOI: 10.1074/jbc.m510975200